YOKO IKEDA, HIROSHI NAGANAWA, SHINICHI KONDO* and TOMIO TAKEUCHI

Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication July 6, 1992)

The biosynthesis of bellenamine was studied by feeding ¹³C and ¹⁵N labeled precursors to the synthetic medium culture of *Streptomyces nashvillensis* MD743-GF4. The high degree of incorporation of D-[1-¹³C] β -lysine indicated that it is a direct intermediate, while supplemented L- β -lysine repressed the production of bellenamine. [2-¹³C]Glycine was well incorporated into the C-1' of the open-chain aldoaminal structure. All four nitrogens of bellenamine were derived from [¹⁵NH₄]₂SO₄ was highly incorporated into CONH. The feeding experiments of ¹³C labeled acetates suggested that the D- β -lysine moiety was derived from L-lysine by catalysis of a new 2,3-aminomutase, and L-lysine was biosynthesized from acetates *via* the TCA cycle and diaminopimelic acid pathway.

A biogenic amine, bellenamine, which was formerly called D- β -lysylmethanediamine is produced by *Streptomyces nashvillensis* MD743-GF4 and has a unique structure.¹⁾ The open-chain aldoaminal structure and the D- β -lysine moiety were then found for the first time in a natural product. The absolute structure, (*R*)-*N*-aminomethyl-3,6-diaminohexanamide, was confirmed by total synthesis.^{1,2)} Bellenamine wealky inhibits growth of some Gram-positive bacteria and enhances both delayed-type hypersensitivity to sheep red blood cells and antibody formation in the mouse spleen.¹⁾ Recently, strong inhibitory effect of bellenamine on infection of T-cell with human immunodeficiency virus was found.³⁾

As reported in our previous paper,⁴⁾ bellenamine was produced in a synthetic medium containing ammonium sulfate as the sole nitrogen source, and supplement of L-lysine to the medium improved the productivity of bellenamine, but D-lysine repressed it. Our interests were the biosynthetic routes leading to the D- β -lysine and aldoaminal moieties. In this paper, the biosynthesis of bellenamine using stable isotope labeled compounds as biosynthetic precursors is reported.

Materials and Methods

Stable Isotope Labeled Compounds

Sodium $[1^{-13}C]$ acetate (99 atom%), sodium $[1,2^{-13}C_2]$ acetate (99%), $[1^{-13}C]$ glycine (99%), [2⁻¹³C]glycine (99%), Ba[¹³CO₃] (99%), [¹⁵N]glycine (98%) and [¹⁵NH₄]₂SO₄ (98%) were purchased from Sigma Chemical Co., U.S.A. L-[1⁻¹³C]Lysine monohydrochloride (99%) and L-[2-*amino*-¹⁵N]lysine dihydrochloride (95%) were purchased from Commissariat à L'Energie Atomique, France, through Nacalai Tesque, Japan. D-[1⁻¹³C] β -Lysine (10% enriched) and D-[1⁻¹³C, *amide*-¹⁵N] β -lysinamide (19% ¹³C and 24% ¹⁵N) were prepared from multiply labeled bellenamine.⁵

 $\frac{Spectral Analyses}{^{13}C \text{ and }^{15}N \text{ NMR}}$ spectra were taken on a JEOL JNM-GX400 spectrometer. ¹³C NMR spectra

[†] Dedicated to the late Professor HAMAO UMEZAWA on the occasion of the 30th anniversary of the Institute of Microbial Chemistry.

1920

(D₂O, pD 4.0) were obtained at 100 MHz with full proton decoupling in a 5 mm sample tube using dioxane as an internal standard ($\delta = 67.4$) and from zero filled FID (free induction decay) signals prior to Fourier transformation. ¹⁵N NMR spectra (10% D₂O in H₂O, pH 4.0) were recorded at 40.5 MHz in a 10 mm sample tube using NH₄¹⁵NO₃ as an external standard ($\delta = 0$) under the following conditions: pulse flip angle 45°, data points 32 K, spectral width 25 kHz, gated decoupling without NOE, delay time between scans (PD) 3 seconds and probe head temperature 24°C.

HVPE

High-voltage paper electrophoresis⁶⁾ (HVPE) was performed on a CAMAG HVE system at 3,300 V for 10 minutes, using HCOOH - CH₃COOH - H₂O (25:75:900, pH 1.8) as an electrolyte solution, and the relative mobilities (Rm) of ninhydrin-positive spots to alanine were calculated.

Bioassay

Antibiotic activities in a phosphate buffer (pH 8.0) were determined by ordinary cylinder-plate assay using *Bacillus subtilis* PCI219 as a test organism and crystalline bellenamine sesquisulfate ($542 \mu g/mg$) as an assay standard.

HPLC Analyses of the Cultured Broth

Spores of S. nashvillensis MD743-GF4 grown on an ISP agar slant (a stock culture of our Institute) were inoculated into a synthetic medium (110 ml, adjusted to pH 7.4 with 1 N NaOH before sterilization) containing D-galactose 2.2 g, dextrin 2.2 g, $(NH_4)_2SO_4$ 220 mg and CaCO₃ 220 mg in a 500-ml baffled Erlenmeyer flask, and cultured at 28°C on a rotatory shaker (180 rpm). At the start of the culture or 3 days later, L-lysine monohydrochloride (44 mg as free), D-lysine monohydrochloride (44 mg), D- β -lysine² (48 mg), L- β -lysine² (48 mg), D- β -lysinamide⁴ (44 mg) or 1'-N-acetylbellenamine⁴ (45 mg) was fed to each flask and the culture was continued. Each sample (*ca.* 2 ml) of 6-, 10-, 14-, 18- or 24-day

	HPLC		Cultured for (days)						
reeding	assay (μg/ml)	6	10	14	18	24			
L-Lysine ^a	Bellenamine	29	43	62	102				
44 mg	(Bioassay)	(46)	(61)	(80)	(84)				
-	L-Lysine	350	301	154	105				
	D- β -Lysinamide	<1	< 1	3	5				
	AcBe	<2	2	2	3				
D-Lysine ^a	Bellenamine	12	12	26	45				
44 mg	(Bioassay)	(40)	(37)	(16)	(46)				
U	D-Lysine	392	382	392	378				
$D-\beta$ -Lysine ^b	Bellenamine	40	93	119	152	188			
48 mg	(Bioassay)	(38)	(94)	(160)	(120)	(142)			
-	$D-\beta$ -Lysine	396	386	374	329	265			
	$D-\beta$ -Lysinamide	12	14	11	16	23			
	AcBe	2	· 5	8	13	15			
$L-\beta$ -Lysine ^b	Bellenamine	< 20	< 20	< 20	< 20	<20			
48 mg	(Bioassay)	(<30)	(<30)	(<30)	(<30)	(<30)			
· ·	L-β-Lysine	464	543	411	444	447			
D- β -Lysinamide ^b	Bellenamine	<20	< 20	< 20	24	44			
44 mg	(Bioassay)	(<30)	(<30)	(<30)	(<30)	(<30)			
•	$D-\beta$ -Lysinamide	354	350	332	340	373			
1'-N-Acetyl-	Bellenamine	29	21	30	24	26			
bellenamine ^b	(Bioassay)	(<30)	(<30)	(<30)	(<30)	(<30)			
(AcBe) 45 mg	AcBe	451	431	445	458	476			

Table 1. Feeding of lysine analogs and 1'-N-acetylbellenamine.

^a Fed on day 0 to a synthetic medium (110 ml) consisting of D-galactose 2.2 g, dextrin 2.2 g, (NH₄)₂SO₄ 220 mg and CaCO₃ 220 mg (pH 7.4).

^b Fed on day 3.

Expt	Addition ^a of labeled compounds	Addition of cold compounds	Cultured for (days)	Bioassay (µg/ml)	Filtrate (ml)	Bellenamine (yields, mg)
1	L-[1- ¹³ C]Lys·HCl 46 mg		10	275	99	11.9
2	[1-13C]AcONa 24 mg		21	204	90	6.3
3	$[1,2^{-13}C_2]$ AcONa 24 mg		20	183	87	7.4
4	[1- ¹³ C]Giy 43 mg		13	53	90	3.6
5	[2- ¹³ C]Gly 47 mg		14	139	99	6.7
6	D-[1- ¹³ C] β -Lys ^b 44 mg		14	124	97	7.0
7	D-[1- ¹³ C, Amide- ¹⁵ N]β-LysNH ₂ ^c		18	36	96	1.9
	43 mg					
8	$[^{15}NH_4]_2SO_4^d$ 193 mg		17	84	97	6.2
9	$[^{15}NH_4]_2SO_4^d$ 190 mg	L-Lys·HCl 50 mg	10	103	105	8.1
10	$[^{15}NH_4]_2SO_4^d$ 220 mg	L-LysNH ₂ ·2HCl 67 mg	18	94	98	3.3
11	$[^{15}NH_4]_2SO_4^{d}$ 200 mg	L-Lys·HCl 50 mg,	12	107	.93	4.1
		Gly 25 mg				
12	[¹⁵ N]Gly 43 mg		15	141	112	11.0
13	[¹⁵ N]Gly 30 mg	L-Lys HCl 50 mg	11	65	100	4.6
14	L-[2-Amino-15N]Lys·2HCle 48 mg	5	13	46	103	3.8

Table 2. Preparation of ¹³C and ¹⁵N labeled bellenamines.

^a Labeled compounds added to a basal medium (110 ml) consisting of D-galactose 2.2 g, dextrin 2.2 g, (NH₄)₂SO₄ 220 mg and CaCO₃ 220 mg, at the start of the culture.

^b 10% ¹³C.

° 19% ¹³C and 24% ¹⁵N.

^d $[^{15}NH_4]_2SO_4$ replaced $(NH_4)_2SO_4$ as a nitrogen source.

° 50% ¹⁵N.

cultured broth was filtered by disposable sterile syringe filter (25 mm, 20 micron, Corning, U.S.A.) and the filtrate (1 ml) was charged to a column (5 mm in diameter) of Amberlite CG-50 (NH₄⁺, 0.5 ml). After washing with H₂O (1 ml), the column was eluted with 2% aq ammonia (10 ml) and the eluate was concentrated to dryness. The residue was dissolved in H₂O (0.5 ml) and 10 μ l of the solution was injected to the column of HPLC.⁴⁾ Analysis was performed on a Waters 600E system using Waters Optipak CE column (3.9 × 150 mm) with a guard column (Optipak CE, 3.9 × 35 mm) at 15.0°C and a flow rate of 0.4 ml/minute. As a mobile phase, 0.36% HClO₄ (pH 1.5) was used and UV absorbance was monitored at 200 nm (Table 1). Retention times (Rt, minutes) were as follows, L-lysine: 11.9, bellenamine: 11.0, D-lysine: 10.4, 1'-N-acetylbellenamine: 8.5, L- β -lysine: 8.4, D- β -lysine: 8.0 and D- β -lysinamide: 7.0.

Isolation of Labeled Bellenamine

S. nashvillensis MD743-GF4 was cultured in a synthetic medium (110 ml, pH 7.4) containing D-galactose 2.2 g, dextrin 2.2 g, $(NH_4)_2SO_4$ or $[^{15}NH_4]_2SO_4$ 220 mg and CaCO₃ 220 mg in a 500-ml baffled Erlenmeyer flask at 28°C for 10~21 days, as described above. At the start of the culture, each stable isotope labeled compound was added (Table 2). The cultured broth was filtered by a filter paper (Toyo Roshi Kaisha, Japan, No. 2) and the filtrate (87~112 ml) was passed through a column of Amberlite CG-50 (NH₄⁺, 10 ml). After washing with H₂O (20 ml), the column was eluted with 1.5% aq ammonia (100 ml). Fractions of 3 ml were collected and each fraction was monitored by HVPE. Single ninhydrin-positive fractions (Rm 2.50) were collected and concentrated to yield pure labeled bellenamine (Table 2).

Results

Feeding of Lysine Analogs and 1'-N-Acetylbellenamine

As shown in Table 1, D- β -lysine in the synthetic medium culture was efficiently converted into bellenamine, but D- β -lysinamide and 1'-N-acetylbellenamine were slightly produced. L-Lysine supplemented to the synthetic medium was metabolized and produced bellenamine. In feeding experiments of D-lysine, L- β -lysine, D- β -lysinamide and 1'-N-acetylbellenamine, production of bellenamine did not improve.

THE JOURNAL OF ANTIBIOTICS

DEC. 1992

Incorporation of Stable Isotope Labeled Precursors

Incorporation of ¹³C and ¹⁵N labeled compounds into bellenamine was analyzed by ¹³C and ¹⁵N NMR spectra, as shown in Tables 3, 4 and 5.

Aetate and L-lysine

Stable isotopes of L- $[1-^{13}C]$ lysine and L- $[2-amino-^{15}N]$ lysine were highly incorporated into C-1 and 3-NH₂ of bellenamine (Tables 3 and 5). In experiments with sodium $[1-^{13}C]$ acetate and $[1,2-^{13}C_2]$ acetate (Expt 2 and 3), $^{13}C - ^{13}C$ spin coupling analyses showed that three sets of two carbons, C-1-C-2, C-4-C-3 and C-4-C-5 in bellenamine were derived from C-1-C-2 of acetates, and C-6 bellenamine was derived from C-2 of acetate (Table 3, Fig 1).

Glycine

[2-13C]Glycine was highly incorporated into C-1' of bellenamine, while low incorporation of

Carbon δ			L-[1- ¹³ C]Lys	[1- ¹³ C]AcONa	[1,2- ¹³ C ₂]AcONa (Expt 3)			
	δ	Intensity ^a	(Expt 1) (Expt 2)			· _	¹³ C- ¹³ C	
		<i>%</i> 0	Enrichment ratio ^b	Enrichment ratio ^b	ratio ^b	J _{CC} (Hz)	Coupling ratio (%)°	
1	173.9	36.4	91.7	1.6	3.3 ^d	49.2	25	
3	48.8	79.1	1.0	0.9	3.1 ^d	36.5	28	
1′	46.0	75.4	1.0	1.0	1.0			
6	39.7	77.7	1.3	1.1	4.2 ^d	36.6	7	
2	36.9	95.8	1.0 ^d	0.9	2.1 ^d	49.2	28	
4	29.8	100	0.7	2.0	2.9^{d}	35.1 (36.5)	° 35	
5	23.7	79.9	1.3	1.3	4.2 ^d	35.1	27	

Table 3. Incorporation of ¹³C-labeled L-lysine and acetates into bellenamine.

^a NMR spectra were measured at PD 1.5 seconds.

^b Enrichment ratio was calculated from the relative intensity of C-1' as 1.0.

^c Ratio (%) was relative to intensities of ¹³C-¹³C spin coupling peaks and of whole peaks.

^d Value included intensity of ¹³C-¹³C spin coupling peaks.

e Coupling was not clear.

Table 4.	Incorporation	of	¹³ C-labeled	amino	acids	into	bellenamine.
----------	---------------	----	-------------------------	-------	-------	------	--------------

Carbon		δ Intensity ^a %	Enrichment ratio ^b						
	δ		[1- ¹³ C]Gly (Expt 4)	[2- ¹³ C]Gly (Expt 5)	D-[1- ¹³ C]β-Lys (Expt 6)	D-[1- ¹³ C, Amide- ¹⁵ N]- β -LysNH ₂ (Expt 7)			
1	173.9	42.1	1.6	0.05	6.8	5.0°			
3	48.8	86.6	0.9	0.07°	0.9	1.0			
1′	46.0	71.1	1.0	1.0	1.0	1.0			
6	39.7	83.5	0.8	0.09°	0.9	0.9			
2	36.9	100	1.0	0.06°	0.8 ^d	0.9 ^e			
4	29.8	98.2	0.9	0.06	0.9	0.8			
5	23.7	76.6	1.1	0.11°	1.1	1.1			

^a NMR spectra were measured at PD 3.0 seconds.

^b Enrichment ratio was calculated from the relative intensity of C-1' as 1.0.

^c Value included intensity of ¹³C-¹³C spin coupling peaks.

^d 10% of ¹³C-¹³C spin coupling peaks were observed.

^e ¹³C-¹³C Spin coupling in C-2 (<10%) was observed, but no ¹³C-¹⁵N spin coupling in C-1.

Nitrogen –	[¹⁵ NH (Ex]	[4] ₂ SO ₄ pt 8)	$[^{15}NH_4]_2SO_4$ +L-Lys (Expt 9)	$[^{15}NH_4]_2SO_4$ +L-LysNH ₂ (Expt 10)	[¹⁵ NH ₄] ₂ SO ₄ + L-Lys, Gly (Expt 11)	[¹⁵ N]Gly (Expt 12)	[¹⁵ N]Gly +L-Lys (Expt 13)	L-[2- <i>Amino</i> - ¹⁵ N]- Lys (Expt 14)
	δ	Intensity %						
CONH	-258.4	43.9	2.3	1.3	2.3	1.3	< 0.1	< 0.1
3-NH ₂	-332.3	100	0.3	0.3	< 0.1	0.8	0.1	1.0
$1'-NH_2$	-333.6	55.7	1.6	1.8	0.7	1.4	1.8	< 0.1
6-NH ₂	-341.9	90.0	0.3	0.3	< 0.1	1.1	0.1	< 0.1

Table 5. Incorporation of ¹⁵N-labeled compounds into bellenamine.

^a Enrichment ratio was derived from comparing with intensity % of each ¹⁵N in bellenamine prepared by addition of [¹⁵NH₄]₂SO₄.

 $[1^{-13}C]$ glycine into C-1 was observed (Table 4). $[^{15}N]$ Glycine was incorporated into all nitrogen atoms, but feeding $[^{15}N]$ glycine with L-lysine (Expt 13) showed incorporation of the ^{15}N into only 1'-NH₂ (Table 5). The ^{13}C of carbonate salts were not incorporated into C-1' (data not shown).

Ammonium sulfate

Since $(NH_4)_2SO_4$ is a sole nitrogen source in the synthetic medium, the ¹⁵N of $[^{15}NH_4]_2SO_4$ was incorporated into all four nitrogen atoms of bellenamine. When L-lysine or L-lysinamide was added, incorporation of the ¹⁵N into both CONH and 1'-NH₂ was observed, while, the addition of both L-lysine and glycine increased markedly incorporation of $[^{15}NH_4]_2SO_4$ into CONH (Table 5).

D- β -Lysine and its amide

As described above, addition of D- $[1^{-13}C]\beta$ -lysine markedly improved the production of bellenamine and the ¹³C was highly incorporated into C-1 of bellenamine (Table 4). Supplement of D- $[1^{-13}C]$, *amide*-¹⁵N] β -lysinamide did not improve the poductivity, but the $[1^{-13}C]$ was incorporated into C-1 of bellenamine, while, the [*amide*-¹⁵N] was hardly incorporated into CONH. Because ¹³C - ¹⁵N spin coupling at C-1 of the labeled bellenamine was not observed (Table 4).

Discussion

The feeding experiments using lysine analogs and 1'-*N*-acetylbellenamine in the synthetic medium culture suggested that $D-\beta$ -lysine is a direct intermediate of bellenamine biosynthesis. However, both $D-\beta$ -lysinamide and 1'-*N*-acetylbellenamide, which were isolated from the synthetic medium culture as minor products,⁴) were not direct intermediates. Furthermore, feeding of D-lysine⁴ as well as of L- β -lysine repressed the productivity of bellenamine.

All nitrogens were derived from $(NH_4)_2SO_4$. la and 2a: Carbons from acetate. lg and 2g: Carbons from glycine.

* A mixture of two kinds of labeled bellenamines was obtained by feeding $[1,2^{-13}C_2]$ acetate, as same as reported in biosynthesis of streptothricin F.^{9,10)}

THE JOURNAL OF ANTIBIOTICS

The results of the feeding experiments using stable isotope labeled compounds suggested that L-lysine biosynthesized from acetate, was converted into D- β -lysine by an aminomutase different from the known lysine 2,3-aminomutase.^{7,8)} GOULD *et al.*^{9,10)} reported that the L- β -lysine moiety in streptothricin F produced by *Streptomyces* was biosynthesized by 2,3-aminomutase from L-lysine which was derived from acetate *via* the TCA cycle and diaminopimelic acid (DAP) pathway. The known lysine 2,3-aminomutase catalized migration of 2(*S*)-NH₂ to 3(*S*)-NH₂ by an intramolecular process.¹⁰⁾ From measurements of enrichment ratios and ¹³C-¹³C spin couplings in bellenamines labeled by feeding of [1-¹³C] and [1,2-¹³C₂]acetates, the acetate incorporation to D- β -lysine was similar to that to L- β -lysine of streptothricin F,^{9,10)} as shown in Fig. 1. That is, decarboxylation step of *meso*-DAP in the DAP pathway, gives two labeled L-lysines,^{9,10)} and then a mixture of two kinds of labeled bellenamines having two sets of two ¹³C at C-1 - C-2 and C-4 - C-3, and having one set of two ¹³C at C-4 - C-5 and a single ¹³C at C-6 is formed *via* D- β -lysine.

Most interestingly, C-2 and NH₂ of glycine were efficiently incorporated into C-1' and 1'-NH₂ of bellenamine, respectively. The nitrogen atom of $(NH_4)_2SO_4$ was introduced into all four nitrogens, and in the case of feeding both L-lysine and glycine, high incorporation of ¹⁵N into CONH was observed.

From these results, the biosynthetic pathway of bellenamine is proposed as shown in Fig. 1. Two interesting findings, the presence of new 2,3-aminomutase forming $D-\beta$ -lysine from L-lysine and the incorporation of glycine into the open-chain aldoaminal structure of bellenamine, are reported here.

Acknowledgment

The authors thank Professor YASUO SUZUKI, University of Shizuoka, for his kind suggestion in performing this work.

References

- IKEDA, Y.; S. KONDO, D. IKEDA, K. YOKOSE, H. FURUTANI, T. IKEDA, M. HAMADA, M. ISHIZUKA, T. TAKEUCHI & H. UMEZAWA: D-β-Lysylmethanediamine, a new biogenetic amine produced by a *Streptomyces*. J. Antibiotics 39: 476~478, 1986
- IKEDA, Y.; D. IKEDA & S. KONDO: Total syntheses of bellenamine and its isomers. J. Antibiotics 45: 1677~1680, 1992
- IKEDA, R.; H. HOSHINO, Y. IKEDA, S. KONDO & T. TAKEUCHI: Activity and mechanism of bellenamine, a new anti-HIV agent. Abstracts of 40th Annual Meeting of the Society of Japanese Virologists, p. 178, Kobe, Oct. 30, 1992
- IKEDA, Y.; S. GOMI, M. HAMADA, S. KONDO & T. TAKEUCHI: Production of bellenamine and new metabolites in a synthetic medium. J. Antibiotics 45: 1763 ~ 1766, 1992
- IKEDA, Y.; H. NAGANAWA, S. KONDO & T. TAKEUCHI: Preparation of ¹³C and ¹⁵N labeled bellanamine and its degradation products. J. Antibiotics 45: 1925~1929, 1992
- UMEZAWA, H. & S. KONDO: Electrophoresis of antibiotics. In Methods in Enzymology. Vol. 43. Antibiotics. Ed., J. H. HASH, pp. 279~290, Academic Press, 1975
- CHIRPICH, T. P.; V. ZAPPIA, R. N. COSTILOW & H. A. BARKER: Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J. Biol. Chem. 245: 1778~1789, 1970
- ABERHART, D. J.; S. J. GOULD, H.-J. LIN, T. K. THIRUVENGADAM & B. H. WEILLER: Stereochemistry of lysine 2,3-aminomutase isolated from *Clostridium subterminale* strain SB4. J. Am. Chem. Soc. 105: 5461~5470, 1983
- 9) GOULD, S. J.; K. J. MARTINKUS & C.-H. TANN: Biosynthesis of streptothricin F. I. Observing the interaction of primary and secondary metabolism with [1,2-¹³C₂]acetate. J. Am. Chem. Soc. 103: 2871~2872, 1981
- 10) THIRUVENGADAM, T. K.; S. J. GOULD, D. J. ABERHART & H.-J. LIN: Biosynthesis of streptothricin F. 5. Formation of β-lysine by Streptomyces L-1689-23. J. Am. Chem. Soc. 105: 5470~5476, 1983